2,575 research outputs found

    H-alpha features with hot onsets. I. Ellerman bombs

    Full text link
    Ellerman bombs are transient brightenings of the wings of the Balmer lines that uniquely mark reconnection in the solar photosphere. They are also bright in strong Ca II and ultraviolet lines and in ultraviolet continua, but they are not visible in the optical continuum and the Na I D and Mg I b lines. These discordant visibilities invalidate all published Ellerman bomb modeling. I argue that the assumption of Saha-Boltzmann lower-level populations is informative to estimate bomb-onset opacities for these diverse diagnostics, even and especially for H-alpha, and employ such estimates to gauge the visibilities of Ellerman bomb onsets in all of them. They constrain Ellerman bomb formation to temperatures 10,000 - 20,000 K and hydrogen densities around 10^15 cm^-3. Similar arguments likely hold for H-alpha visibility in other transient phenomena with hot and dense onsets.Comment: Accepted by Astronomy & Astrophysic

    Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    Full text link
    The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) Non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Halpha, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Halpha also at low temperature.Comment: 10 pages, 4 figure

    The Quiet-Sun Photosphere and Chromosphere

    Full text link
    The overall structure and the fine structure of the solar photosphere outside active regions are largely understood, except possibly important roles of a turbulent near-surface dynamo at its bottom, internal gravity waves at its top, and small-scale vorticity. Classical 1D static radiation-escape modelling has been replaced by 3D time-dependent MHD simulations that come closer to reality. The solar chromosphere, in contrast, remains ill-understood although its pivotal role in coronal mass and energy loading makes it a principal research area. Its fine structure defines its overall structure, so that hard-to-observe and hard-to-model small-scale dynamical processes are the key to understanding. However, both chromospheric observation and chromospheric simulation presently mature towards the required sophistication. The open-field features seem of greater interest than the easier-to-see closed-field features.Comment: Accepted for special issue "Astrophysical Processes on the Sun" of Phil. Trans. Royal Soc. A, ed. C. Parnell. Note: clicking on the year in a citation opens the corresponding ADS abstract page in the browse

    Radial Velocity Jitter in Stars from the California and Carnegie Planet Search at Keck Observatory

    Full text link
    I present an empirical model for predicting a star's radial velocity jitter from its B-V color, activity level, and absolute magnitude. This model is based on observations of 450 well- observed stars from Keck Observatory for the California and Carnegie Planet Search Program. The model includes noise from both astrophysical sources and systematic errors, and describes jitter as generally increasing with a star's activity and height above the main sequence.Comment: 16 pages, 7 figures, PASP in pres

    H-alpha features with hot onsets. II. A contrail fibril

    Full text link
    The solar chromosphere observed in H-alpha consists mostly of narrow fibrils. The longest typically originate in network or plage and arch far over adjacent internetwork. We use data from multiple telescopes to analyze one well-observed example in a quiet area. It resulted from the earlier passage of an accelerating disturbance in which the gas was heated to high temperature as in the spicule-II phenomenon. After this passage a dark H-Halpha fibril appeared as a contrail. We use Saha-Boltzmann extinction estimation to gauge the onset and subsequent visibilities in various diagnostics and conclude that such H-alpha fibrils can indeed be contrail phenomena, not indicative of the thermodynamic and magnetic environment when they are observed but of more dynamic happenings before. They do not connect across internetwork cells but represent launch tracks of heating events and chart magnetic field during launch, not at present.Comment: Accepted for Astronomy & Astrophysic

    A spiral structure in the disk of EX Draconis on the rise to outburst maximum

    Full text link
    We report on the R-band eclipse mapping analysis of high-speed photometry of the dwarf nova EX Dra on the rise to the maximum of the November 1995 outburst. The eclipse map shows a one-armed spiral structure of ~180 degrees in azimuth, extending in radius from R ~0.2 to 0.43 R_{L1} (where R_{L1} is the distance from the disk center to the inner Lagrangian point), that contributes about 22 per cent of the total flux of the eclipse map. The spiral structure is stationary in a reference frame co-rotating with the binary and is stable for a timescale of at least 5 binary orbits. The comparison of the eclipse maps on the rise and in quiescence suggests that the outbursts of EX Dra may be driven by episodes of enhanced mass-transfer from the secondary star. Possible explanations for the nature of the spiral structure are discussed.Comment: To appear in the Astrophysical Journal Letters; 8 pages, 2 figures; coded with AAS latex styl

    Dynamics of the solar chromosphere. V. High-frequency modulation in ultraviolet image sequences from TRACE

    Full text link
    We search for signatures of high-frequency oscillations in the upper solar photosphere and low chromosphere in the context of acoustic heating of outer stellar atmospheres. We use ultraviolet image sequences of a quiet center-disk area from the Transition Region and Coronal Explorer (TRACE) mission which were taken with strict cadence regularity. The latter permits more reliable high-frequency diagnosis than in earlier work. Spatial Fourier power maps, spatially averaged coherence and phase-difference spectra, and spatio-temporal k-f decompositions all contain high-frequency features that at first sight seem of considerable intrinsic interest but actually are more likely to represent artifacts of different nature. Spatially averaged phase difference measurement provides the most sensitive diagnostic and indicates the presence of acoustic modulation up to f=20 mHz (periods down to 50 seconds) in internetwork areas.Comment: 9 pages, 8 figure

    HST/FOS Eclipse Observations of the Nova-like Cataclysmic Variable UX Ursae Majoris

    Get PDF
    [abridged abstract] We present and analyze Hubble Space Telescope observations of the eclipsing nova-like cataclysmic variable UX UMa obtained with the Faint Object Spectrograph. Two eclipses each were observed with the G160L grating (covering the ultraviolet waveband) in August of 1994 and with the PRISM (covering the near-ultraviolet to near-infrared) in November of the same year. The system was 50% brighter in November than in August, which, if due to a change in the accretion rate, indicates a fairly substantial increase in Mdot_acc by >~ 50%. Model disk spectra constructed as ensembles of stellar atmospheres provide poor descriptions of the observed post-eclipse spectra, despite the fact that UX UMa's light should be dominated by the disk at this time. Suitably scaled single temperature model stellar atmospheres with T_eff = 12,500-14,500 K actually provide a better match to both the ultraviolet and optical post-eclipse spectra. Evidently, great care must be taken in attempts to derive accretion rates from comparisons of disk models to observations. One way to reconcile disk models with the observed post-eclipse spectra is to postulate the presence of a significant amount of optically thin material in the system. Such an optically thin component might be associated with the transition region (``chromosphere'') between the disk photosphere and the fast wind from the system, whose presence has been suggested by Knigge & Drew (1997).Comment: 35 pages, including 12 figures; to appear in the ApJ (Vol. 499

    All-sky Relative Opacity Mapping Using Night Time Panoramic Images

    Full text link
    An all-sky cloud monitoring system that generates relative opacity maps over many of the world's premier astronomical observatories is described. Photometric measurements of numerous background stars are combined with simultaneous sky brightness measurements to differentiate thin clouds from sky glow sources such as air glow and zodiacal light. The system takes a continuous pipeline of all-sky images, and compares them to canonical images taken on other nights at the same sidereal time. Data interpolation then yields transmission maps covering almost the entire sky. An implementation of this system is currently operating through the Night Sky Live network of CONCAM3s located at Cerro Pachon (Chile), Mauna Kea (Hawaii), Haleakala (Hawaii), SALT (South Africa) and the Canary Islands (Northwestern Africa).Comment: Accepted for publication in PAS
    • …
    corecore